Polar and SET Reaction Pathways of Quinones

Xingwei Guo and Herbert Mayr,
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377 München, Germany, e-mail: Herbert.Mayr@cup.uni-muenchen.de

2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ) is one of the most important oxidizing reagents in organic chemistry. Its reactions with silylated enol ethers were reported to yield products arising from C - as well as from O-attack as illustrated in Scheme 1. ${ }^{1}$ Though both products were suggested to be formed via a radical ion pair, the possibility of a nucleophilic attack of the silyl enol ether on DDQ to form the product of C -attack was explicitly mentioned as an alternative. ${ }^{1}$

Scheme 1. Reaction of DDQ with 1-trimethylsiloxycyclohexene ${ }^{1,2}$
Bhattacharya's observation ${ }^{1}$ prompted us to analyze the reactions of DDQ and other quinones with π-nucleophiles, amines, and hydride donors, ${ }^{2-4}$ using our linear free energy relationship (1), ${ }^{5}$ where electrophiles are characterized by one parameter (E) and nucleophiles are characterized by the solvent-dependent nucleophilicity parameter N and the susceptibility parameter $S N$.

$$
\begin{equation*}
\lg k_{20^{\circ} \mathrm{C}}=S_{N}(E+N) \tag{1}
\end{equation*}
$$

By assigning electrophilicity parameters E to the different ring positions of a variety of quinones and correlation with the Gibbs free energies of SET processes, an ordering system for quinone reactivities has been established. ${ }^{2-4}$

1. Bhattacharya, A.; DiMichele, L. M.; Dolling, U.-H.; Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem. 1989, 54, 6118-6120.
2. Guo, X.; Mayr, H.; J. Am. Chem. Soc. 2013, 135, 12377-12387.
3. Guo, X.; Mayr, H.; J. Am. Chem. Soc. 2014, 136, 11499-11512.
4. Guo, X.; Zipse, H.; Mayr, H.; J. Am. Chem. Soc. 2014, 136, 13863-13873.
5. (a) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H.; J. Am. Chem. Soc. 2001, 123, 9500-9512. (b) Mayr, H.; Ofial, A. R.; J. Phys. Org. Chem. 2008, 21, 584-595.
